If it's not what You are looking for type in the equation solver your own equation and let us solve it.
.8/x^2=180
We move all terms to the left:
.8/x^2-(180)=0
Domain of the equation: x^2!=0We multiply all the terms by the denominator
x^2!=0/
x^2!=√0
x!=0
x∈R
-180*x^2+.8=0
We add all the numbers together, and all the variables
-180x^2+0.8=0
a = -180; b = 0; c = +0.8;
Δ = b2-4ac
Δ = 02-4·(-180)·0.8
Δ = 576
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{576}=24$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-24}{2*-180}=\frac{-24}{-360} =1/15 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+24}{2*-180}=\frac{24}{-360} =-1/15 $
| 4(x+4)=5x-3 | | 3(x+5)-10+2x=0 | | x+x=7+8+x | | (5w-2)(4-w)=0 | | 10x-8-x=-35 | | 8-x+9=8 | | 0=8+3+x-26 | | 4(g+2)=16 | | 2x-6+1-10x=19 | | x-4=4-5 | | 7x-5=4×+35 | | -4=16/s | | 41=3a+11 | | 2y+1/2y+5=10 | | x+x+2+x+4+x+6=51 | | s/3+8=10 | | p-4p+15=0 | | 4+41=9+x | | 7x-5=4×+35×+30 | | 6(3x+2)6-7=6x-12x/4-5 | | m/6+m/4=1 | | 6=87-x | | 12g+5g-7g=20 | | 6a+14=44 | | 26-4x+12+6x=16 | | 18x-x+5=10x+2x-10X= | | 19=q/3=15 | | V=4/3(3.14)r3 | | x+(x+6)=(x+6)+4 | | 64^2a=16^3a+1 | | x+x=4+8+x | | 50+7x-8x-3x=-10 |